Real-Time Polygonal-Light Shading with Linearly Transformed Cosines

Eric Heitz at al. 2016 SIGGRAPH

Motivations

Realistic & Real-time CG

Hemi-spherical Integration over Polygons

Recall: Rendering Equation

$$
L(x \to \Phi) = L_e(x \to \Phi) + \int_{\Omega} L(x \leftarrow \Psi) f_r(x, \Psi \to \Phi) \cos \theta_x d\omega_{\Psi}
$$

hemispherical
integration!

$$
L(\omega_o) = L_e(\omega_o) + \int_{\Omega} L(\omega_i) f_r(\omega_i, \omega_o) \cos \theta_i d\omega_i
$$

What We've Learned

Path tracing(Monte Carlo)

$$
\sum_{i=1}^{N} \frac{L(\omega_i) f_r(\omega_i, \omega_o) \cos(\theta_i)}{p(\omega_i)}
$$

Downside

- large amount of rays
- noise, artifacts

Analytic Solutions

Is it possible to solve the original spherical integrations analytically?

$$
\int_{\Omega} L(\omega_i) f_r(\omega_i, \omega_o) \cos \theta_i d\omega_i = ? ? ? ?
$$

Analytic Solutions

Is it possible to solve the original spherical integrations analytically?

$$
\int_{\Omega} L(\omega_i) f_r(\omega_i, \omega_o) \cos \theta_i d\omega_i = ? ? ? ?
$$

Answer: Nope

State-of-the-art physically based models \rightarrow sophisticated to integrate

Sophisticated Shapes of BRDFs

varying roughness

anisotropy

skewness

Approximate Method Is Required

To approximate integrations

The authors suggested

Linearly Transformed Cosines(LTCs) to approximate:

$$
\int_{\Omega} L(\omega_i) f_r(\omega_i, \omega_o) \cos \theta_i d\omega_i
$$

$$
\approx D(\omega_i)
$$

Summary

- 1. Find out a new distribution
- 2. approximate BRDFs
- 3. cover a wide variety of materials

: almost specular to very glossy

4. integration has to be done in real-time

Finding Proper Distributions

Let's Try with Some Distributions

Spherical Gaussian Analytic solutions? analytic

Calculable in real time?

Let's Try with Some Distributions

Let's Try with Some Distributions

Is it possible to extend the set of mathematically exact solutions?

Solution: Linearly Transformed Cosines(LTCs)

Linearly Transformed Cosines

Linear transformations

rotate, expand, squeeze, shear

Thus, can make almost arbitrary shapes!!!

Linearly Transformed Cosines

(Clamped) Cosine Distributions

clamped cosine unit sphere

$$
D_0(\omega_0 = (x, y, z)) = \frac{1}{\pi} \max(\cos \theta_z, 0) = \frac{1}{\pi} \max(z, 0)
$$

Main Characteristic of Cosine

Integration is so easy!!

$$
\int_{P_0}D_0(\omega_0)d\omega_0=\int_{P_0}\cos\theta\sin\theta d\theta d\phi
$$

The complexity: $O(\# \text{ of vertices}) = \text{almost nothing}$

[Baum et al. 1989]

BRDFs vs Clamped Cosine Distributions

Unfortunately, BRDFs are very different from the original cosine distribution…

Linearly Transformed Cosines

Somehow, we can cover various shapes of BRDF by using LTCs

Linearly Transformed Cosines

We can make even funny shapes

So far….

- 1. Polygon lights, Spherical integrations!!!
- 2. Try to find analytic solutions (real-time rendering)
- 3. Cosine integration is very simple.
- 4. Linearly transformed cosine distributions can approximate various shapes of BRDFs

So far….

- 1. Polygon lights, Spherical integrations!!!
- 2. Try to find analytic solutions (real-time rendering)
- **3. Cosine integration is very simple.**
- **4. Linearly transformed cosine distributions can approximate various shapes of BRDFs**

How can we connect 3 and 4??

Mathematics

Reminiscence of Calculus I

Change of variables (variable transformations)

$$
\int_{a}^{b} \left[f(g(x))g'(x) \right] dx = \int_{g^{-1}(a)}^{g^{-1}(b)} \left[f(y) \right] dy
$$

Complicated

Connection Between Cosine and LTC

$$
MS_0 = S
$$

$$
\frac{MP_0}{\|MP_0\|} = P
$$

$$
for \omega_0 \in P_0, \ \omega \in P
$$

$$
\frac{M\omega_0}{\|M\omega_0\|} = \omega
$$

Cosine to LTC

$$
\int_{P_0}D_0(\omega_0)d\omega_0
$$

$$
=\int_P D_0(\frac{M^{-1}\omega}{\|M^{-1}\omega\|})\frac{d\omega_0}{d\omega}d\omega
$$

$$
=\int_P D_0(\frac{M^{-1}\omega}{\|M^{-1}\omega\|})\frac{\|M^{-1}\|}{\|M^{-1}\omega\|^3}d\omega\ =\int_P D(\omega)d\omega
$$

$$
\frac{M\omega_0}{\|M\omega_0\|} = \omega
$$

$$
\omega_0 = \frac{M^{-1}\omega}{\|M^{-1}\omega\|}
$$

LTC to Cosine

reciprocally….

$$
\int_{P} D(\omega) d\omega = \int_{P_0} D(\frac{M\omega_0}{\|M\omega_0\|}) \frac{|M|}{\|M\omega_0\|^3} d\omega_0 = \int_{P_0} D_0(\omega_0) d\omega_0
$$

Sum Up Everything

- LTC: approximates BRDF
- Cosine: easy to integrate

 M^{-1}

 \longleftarrow

 $cosine$

Summary: Main Benefits of Using LTCs

- 1. Cover important characteristics of BRDFs: anisotropy and skewness
- 2. Integration can be done in real time

One Dirty Thing Is...

33

BRDF Fitting: Somewhat Hand-wavy….

Best-fit LTC: minimize L3 norm \rightarrow the best visual results

 $D(\omega_i) \approx f_r(\omega_i, \omega_o) \cos \theta_i$

Manually precompute a set of LTCs with varying roughness and ω_o

Overall Procedure

- 1. Before runtime,
	- a. Find M and LTC provides the best fit
	- b. Store Ms
- 2. Runtime,
	- a. For each material(BRDF) and polygonal light,
	- b. Inverse transform the polygon
	- c. Compute the integral of Clamped Cosine over inverse-transformed polygon

LTCs to the rendering equation

Shading with Constant Polygonal Lights

 $L(\omega)=L$

$$
\int_{P} L(\omega_{i}) f_{r}(\omega_{i}, \omega_{o}) \cos \theta_{i} d\omega_{i}
$$
\n
$$
= L \int_{P} f_{r}(\omega_{i}, \omega_{o}) \cos \theta_{i} d\omega_{i}
$$
\n
$$
\approx L \int_{P} D(\omega_{i}) d\omega_{i}
$$
\n
$$
= L \int_{P_{0}} D_{0}(\omega_{0}) d\omega_{0}
$$

Shading with Constant Polygonal Lights

Shading with Textured Polygonal Lights

 $\int_P L(\omega_i) f_r(\omega_i, \omega_o) \cos \theta_i d\omega_i$

Texture prefiltering

Texture fetching

Shading with Textured Polygonal Lights

Game Engine Integration

Conclusion

Conclusion

